Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 3910, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32127622

RESUMO

An emerging disturbance for Caribbean reefs is the massive arrival of pelagic Sargassum, which deteriorates water quality due to the production of leachates. The highest arrivals of Sargassum took place when broadcasting corals spawned. We experimentally determined the effect of Sargassum leachates on swimming behavior of Acropora palmata larvae through five treatments (control, stain (simulating 100% leachate color), and 25%, 50% and 100% Sargassum leachate concentrations) during 30 min (10 min of videos and 20 min of post-observations). In the videos, larvae with leachates reduced swimming speed, were positively geotactic, the percentage of individuals that swam in a spiral pattern increased, and most behavioral displacements occurred at lower frequencies than larvae without leachates. Moreover, symptomatic spiral behavior was higher in the presence of leachates, suggesting that this behavior may be an effect of pollution. During post-observations, most larvae with leachates were motionless. This is the first time that Sargassum leachates have been documented modifying larval swimming behavior, which may reduce larval dispersion and genetic diversity. We suggest that a future evaluation of the effects of leachates at lower concentrations and over longer periods of exposure is needed. The resilience of corals may be compromised if Sargassum arrivals become frequent events.


Assuntos
Antozoários/efeitos dos fármacos , Antozoários/fisiologia , Larva/efeitos dos fármacos , Larva/fisiologia , Sargassum/metabolismo , Natação , Animais , Reprodução/efeitos dos fármacos
2.
Sci Rep ; 5: 12814, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26244816

RESUMO

The morphological plasticity and community responses of algae competing with corals have not been assessed. We evaluated eight morphological characters of four species of stoloniferous clonal filamentous turf algae (FTA), including Lophosiphonia cristata (Lc) and Polysiphonia scopulorum var. villum (Psv), and the composition and number of turf algae (TA) in competition for space with the coral Orbicella spp. under experimental and non-manipulated conditions. All FTA exhibited morphological responses, such as increasing the formation of new ramets (except for Psv when competing with O. faveolata). Opposite responses in the space between erect axes were found when Psv competed with O. faveolata and when Lc competed with O. annularis. The characters modified by each FTA species, and the number and composition of TA species growing next to coral tissue differed from that of the TA growing at ≥ 3 cm. The specific and community responses indicate that some species of TA can actively colonise coral tissue and that fundamental competitive interactions between the two types of organisms occur within the first millimetres of the coral-algal boundary. These findings suggest that the morphological plasticity, high number, and functional redundancy of stoloniferous TA species favour their colonisation of coral tissue and resistance against coral invasion.


Assuntos
Antozoários/fisiologia , Clorófitas/fisiologia , Cianobactérias/fisiologia , Phaeophyceae/fisiologia , Animais
3.
PLoS One ; 10(2): e0117936, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25658586

RESUMO

Macroalgae and filamentous turf algae (FTA) are abundant on degraded coral reefs, and the reproductive responses of corals may indicate sub-lethal stress under these conditions. The percentage of gametogenic stages (PGS) and the maximum diameter of eggs (MDE; or egg size) of Orbicella annularis were used to evaluate the effect of long- (7-10 months) and short-term (2.5 months) FTA removal (treatments T1 and T2, respectively) at both the beginning (May) and the end (August) of gametogenesis. Ramets (individual lobes of a colony) surrounded by FTA (T3) or crustose coralline algae (CCA; T4) were used as controls. The removal of FTA enhanced the development of gametes (i.e., a larger and higher percentage of mature gametes (PMG)) of O. annularis for T1 vs. T3 ramets in May and T1 and T2 vs. T3 ramets in August. Similar values of PGS and MDE between gametes from T3 and T4 in both May and August were unexpected because a previous study had shown that the same ramets of T4 (with higher tissue thickness, chlorophyll a cm-2 and zooxanthellae density and lower mitotic index values) were less stressed than ramets of T3. Evaluating coral stress through reproduction can reveal more sensitive responses than other biological parameters; within reproductive metrics, PGS can be a better stress indicator than egg size. The presence of turf algae strongly impacted the development of gametes and egg size (e.g., PMG in ramets with FTA removal increased almost twofold in comparison with ramets surrounded by FTA in August), most likely exerting negative chronic effects in the long run due to the ubiquity and permanence of turf algae in the Caribbean. These algae can be considered a stressor that affects coral sexual reproduction. Although the effects of turf algae on O. annularis are apparently less severe than those of other stressors, the future of this species is uncertain because of the combined impacts of these effects, the decline of O. annularis populations and the almost complete lack of recruitment.


Assuntos
Antozoários/fisiologia , Recifes de Corais , Gametogênese/fisiologia , Células Germinativas/fisiologia , Alga Marinha , Animais , Região do Caribe , Ecossistema
4.
PLoS One ; 8(1): e54810, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23372774

RESUMO

Coral reef degradation increases coral interactions with filamentous turf algae (FTA) and macroalgae, which may result in chronic stress for the corals. We evaluated the effects of short (2.5 month) and long (10 month) periods of FTA removal on tissue thickness (TT), zooxanthellae density (ZD), mitotic index (MI), and concentration of chlorophyll a (Chl a) in Montastraea annularis at the beginning and end of gametogenesis. Ramets (individual lobes within a colony) consistently surrounded by FTA and ramets surrounded by crustose coralline algae (CCA) were used as controls. FTA removal reduced coral stress, indicated by increased TT and ZD and lower MI. The measured effects were similar in magnitude for the short and long periods of algal removal. Ramets were more stressed at the end of gametogenesis compared with the beginning, with lower ZD and Chl a cm(-2), and higher MI. However, it was not possible to distinguish the stress caused by the presence of FTA from that caused by seasonal changes in seawater temperature. Ramets surrounded by CCA showed less stress in comparison with ramets surrounded by FTA: with higher TT, Chl a cm(-2) and ZD, and lower MI values. Coral responses indicated that ramets with FTA suffered the most deleterious effects and contrasted with those measured in ramets surrounded by CCA. According to published studies and our observations, there could be at least six mechanisms associated to FTA in the stress caused to M. annularis by FTA. Owing to the high cover of FTA (in contrast to macroalgae and CCA) in the Caribbean, the chronic stress, the overgrowth and mortality that this functional algal group can cause on M. annularis species complex, a further decline of this important reef-building coral in the Caribbean is expected.


Assuntos
Antozoários/microbiologia , Antozoários/fisiologia , Cianobactérias/fisiologia , Ecossistema , Animais , Região do Caribe , Recifes de Corais , Gametogênese , Estresse Fisiológico , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...